3.2058 \(\int \frac{1}{\sqrt{d+e x} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx\)

Optimal. Leaf size=196 \[ -\frac{3 c d \sqrt{d+e x}}{\left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac{1}{\sqrt{d+e x} \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{3 c d \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d^2-a e^2}}\right )}{\left (c d^2-a e^2\right )^{5/2}} \]

[Out]

1/((c*d^2 - a*e^2)*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) -
(3*c*d*Sqrt[d + e*x])/((c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*
x^2]) - (3*c*d*Sqrt[e]*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^
2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(c*d^2 - a*e^2)^(5/2)

_______________________________________________________________________________________

Rubi [A]  time = 0.364772, antiderivative size = 196, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 39, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.103 \[ -\frac{3 c d \sqrt{d+e x}}{\left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}+\frac{1}{\sqrt{d+e x} \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{3 c d \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d^2-a e^2}}\right )}{\left (c d^2-a e^2\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]  Int[1/(Sqrt[d + e*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

1/((c*d^2 - a*e^2)*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) -
(3*c*d*Sqrt[d + e*x])/((c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*
x^2]) - (3*c*d*Sqrt[e]*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^
2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(c*d^2 - a*e^2)^(5/2)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 75.748, size = 184, normalized size = 0.94 \[ \frac{3 c d \sqrt{e} \operatorname{atanh}{\left (\frac{\sqrt{e} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}}{\sqrt{d + e x} \sqrt{a e^{2} - c d^{2}}} \right )}}{\left (a e^{2} - c d^{2}\right )^{\frac{5}{2}}} - \frac{3 c d \sqrt{d + e x}}{\left (a e^{2} - c d^{2}\right )^{2} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} - \frac{1}{\sqrt{d + e x} \left (a e^{2} - c d^{2}\right ) \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

3*c*d*sqrt(e)*atanh(sqrt(e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))/(sqrt
(d + e*x)*sqrt(a*e**2 - c*d**2)))/(a*e**2 - c*d**2)**(5/2) - 3*c*d*sqrt(d + e*x)
/((a*e**2 - c*d**2)**2*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))) - 1/(sqrt
(d + e*x)*(a*e**2 - c*d**2)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2)))

_______________________________________________________________________________________

Mathematica [A]  time = 0.278868, size = 141, normalized size = 0.72 \[ \frac{3 c d \sqrt{e} (d+e x) \sqrt{a e+c d x} \tanh ^{-1}\left (\frac{\sqrt{e} \sqrt{a e+c d x}}{\sqrt{a e^2-c d^2}}\right )-\sqrt{a e^2-c d^2} \left (a e^2+c d (2 d+3 e x)\right )}{\sqrt{d+e x} \left (a e^2-c d^2\right )^{5/2} \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(Sqrt[d + e*x]*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-(Sqrt[-(c*d^2) + a*e^2]*(a*e^2 + c*d*(2*d + 3*e*x))) + 3*c*d*Sqrt[e]*Sqrt[a*e
+ c*d*x]*(d + e*x)*ArcTanh[(Sqrt[e]*Sqrt[a*e + c*d*x])/Sqrt[-(c*d^2) + a*e^2]])/
((-(c*d^2) + a*e^2)^(5/2)*Sqrt[d + e*x]*Sqrt[(a*e + c*d*x)*(d + e*x)])

_______________________________________________________________________________________

Maple [A]  time = 0.035, size = 235, normalized size = 1.2 \[{\frac{1}{ \left ( cdx+ae \right ) \left ( a{e}^{2}-c{d}^{2} \right ) ^{2}}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+aed} \left ( 3\,{\it Artanh} \left ({\frac{e\sqrt{cdx+ae}}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}}} \right ) \sqrt{cdx+ae}xcd{e}^{2}+3\,{\it Artanh} \left ({\frac{e\sqrt{cdx+ae}}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}}} \right ) \sqrt{cdx+ae}c{d}^{2}e-3\,\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}xcde-\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}a{e}^{2}-2\,\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}c{d}^{2} \right ) \left ( ex+d \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{ \left ( a{e}^{2}-c{d}^{2} \right ) e}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(e*x+d)^(1/2)/(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(3*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c
*d^2)*e)^(1/2))*(c*d*x+a*e)^(1/2)*x*c*d*e^2+3*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^
2-c*d^2)*e)^(1/2))*(c*d*x+a*e)^(1/2)*c*d^2*e-3*((a*e^2-c*d^2)*e)^(1/2)*x*c*d*e-(
(a*e^2-c*d^2)*e)^(1/2)*a*e^2-2*((a*e^2-c*d^2)*e)^(1/2)*c*d^2)/(e*x+d)^(3/2)/(c*d
*x+a*e)/(a*e^2-c*d^2)^2/((a*e^2-c*d^2)*e)^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*sqrt(e*x + d)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.231646, size = 1, normalized size = 0.01 \[ \left [\frac{3 \,{\left (c^{2} d^{2} e^{2} x^{3} + a c d^{3} e +{\left (2 \, c^{2} d^{3} e + a c d e^{3}\right )} x^{2} +{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2}\right )} x\right )} \sqrt{-\frac{e}{c d^{2} - a e^{2}}} \log \left (-\frac{c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} - 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d^{2} - a e^{2}\right )} \sqrt{e x + d} \sqrt{-\frac{e}{c d^{2} - a e^{2}}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (3 \, c d e x + 2 \, c d^{2} + a e^{2}\right )} \sqrt{e x + d}}{2 \,{\left (a c^{2} d^{6} e - 2 \, a^{2} c d^{4} e^{3} + a^{3} d^{2} e^{5} +{\left (c^{3} d^{5} e^{2} - 2 \, a c^{2} d^{3} e^{4} + a^{2} c d e^{6}\right )} x^{3} +{\left (2 \, c^{3} d^{6} e - 3 \, a c^{2} d^{4} e^{3} + a^{3} e^{7}\right )} x^{2} +{\left (c^{3} d^{7} - 3 \, a^{2} c d^{3} e^{4} + 2 \, a^{3} d e^{6}\right )} x\right )}}, \frac{3 \,{\left (c^{2} d^{2} e^{2} x^{3} + a c d^{3} e +{\left (2 \, c^{2} d^{3} e + a c d e^{3}\right )} x^{2} +{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2}\right )} x\right )} \sqrt{\frac{e}{c d^{2} - a e^{2}}} \arctan \left (\frac{\sqrt{e x + d}}{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{\frac{e}{c d^{2} - a e^{2}}}}\right ) - \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (3 \, c d e x + 2 \, c d^{2} + a e^{2}\right )} \sqrt{e x + d}}{a c^{2} d^{6} e - 2 \, a^{2} c d^{4} e^{3} + a^{3} d^{2} e^{5} +{\left (c^{3} d^{5} e^{2} - 2 \, a c^{2} d^{3} e^{4} + a^{2} c d e^{6}\right )} x^{3} +{\left (2 \, c^{3} d^{6} e - 3 \, a c^{2} d^{4} e^{3} + a^{3} e^{7}\right )} x^{2} +{\left (c^{3} d^{7} - 3 \, a^{2} c d^{3} e^{4} + 2 \, a^{3} d e^{6}\right )} x}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*sqrt(e*x + d)),x, algorithm="fricas")

[Out]

[1/2*(3*(c^2*d^2*e^2*x^3 + a*c*d^3*e + (2*c^2*d^3*e + a*c*d*e^3)*x^2 + (c^2*d^4
+ 2*a*c*d^2*e^2)*x)*sqrt(-e/(c*d^2 - a*e^2))*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d
^3 + 2*a*d*e^2 - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d^2 - a*e^2)*s
qrt(e*x + d)*sqrt(-e/(c*d^2 - a*e^2)))/(e^2*x^2 + 2*d*e*x + d^2)) - 2*sqrt(c*d*e
*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(3*c*d*e*x + 2*c*d^2 + a*e^2)*sqrt(e*x + d))/(
a*c^2*d^6*e - 2*a^2*c*d^4*e^3 + a^3*d^2*e^5 + (c^3*d^5*e^2 - 2*a*c^2*d^3*e^4 + a
^2*c*d*e^6)*x^3 + (2*c^3*d^6*e - 3*a*c^2*d^4*e^3 + a^3*e^7)*x^2 + (c^3*d^7 - 3*a
^2*c*d^3*e^4 + 2*a^3*d*e^6)*x), (3*(c^2*d^2*e^2*x^3 + a*c*d^3*e + (2*c^2*d^3*e +
 a*c*d*e^3)*x^2 + (c^2*d^4 + 2*a*c*d^2*e^2)*x)*sqrt(e/(c*d^2 - a*e^2))*arctan(sq
rt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e/(c*d^2 - a*e^2))
)) - sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(3*c*d*e*x + 2*c*d^2 + a*e^2)*s
qrt(e*x + d))/(a*c^2*d^6*e - 2*a^2*c*d^4*e^3 + a^3*d^2*e^5 + (c^3*d^5*e^2 - 2*a*
c^2*d^3*e^4 + a^2*c*d*e^6)*x^3 + (2*c^3*d^6*e - 3*a*c^2*d^4*e^3 + a^3*e^7)*x^2 +
 (c^3*d^7 - 3*a^2*c*d^3*e^4 + 2*a^3*d*e^6)*x)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac{3}{2}} \sqrt{d + e x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(e*x+d)**(1/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Integral(1/(((d + e*x)*(a*e + c*d*x))**(3/2)*sqrt(d + e*x)), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.55517, size = 4, normalized size = 0.02 \[ \mathit{sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*sqrt(e*x + d)),x, algorithm="giac")

[Out]

sage0*x